log[3](x+15)-log[3](x-2)=4

Simple and best practice solution for log[3](x+15)-log[3](x-2)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for log[3](x+15)-log[3](x-2)=4 equation:


Simplifying
log[3](x + 15) + -1log[3](x + -2) = 4

Reorder the terms:
glo * 3(15 + x) + -1log[3](x + -2) = 4

Reorder the terms for easier multiplication:
3glo(15 + x) + -1log[3](x + -2) = 4
(15 * 3glo + x * 3glo) + -1log[3](x + -2) = 4
(45glo + 3glox) + -1log[3](x + -2) = 4

Reorder the terms:
45glo + 3glox + -1glo * 3(-2 + x) = 4

Reorder the terms for easier multiplication:
45glo + 3glox + -1 * 3glo(-2 + x) = 4

Multiply -1 * 3
45glo + 3glox + -3glo(-2 + x) = 4
45glo + 3glox + (-2 * -3glo + x * -3glo) = 4
45glo + 3glox + (6glo + -3glox) = 4

Reorder the terms:
45glo + 6glo + 3glox + -3glox = 4

Combine like terms: 45glo + 6glo = 51glo
51glo + 3glox + -3glox = 4

Combine like terms: 3glox + -3glox = 0
51glo + 0 = 4
51glo = 4

Solving
51glo = 4

Solving for variable 'g'.

Move all terms containing g to the left, all other terms to the right.

Divide each side by '51lo'.
g = 0.07843137255l-1o-1

Simplifying
g = 0.07843137255l-1o-1

See similar equations:

| x-3/x=0 | | 3-2a=17 | | log[4](x+5)-log[4](x)=1 | | 3a^2+6a^3/3a+9a^2 | | t/4-2=9 | | 3+3m=9 | | -5v-2=-37 | | -4x^3+6x^2+4x=0 | | -k-5=-3 | | 2(a+5)=11 | | 46.5=5c-2 | | 3x+111= | | 4a+1=-31 | | 3e-3=4.2 | | 5p=43 | | -5+2x=-21 | | -4n-4=-36 | | -3z-1=2(z+7) | | -3-5n=-48 | | 4a+13=22+7a | | 3(2x-4)=9-3(x-5) | | 2(p-4)=-6 | | 4-7b=2b+11 | | 4(-6+1x)=8 | | 4w=10 | | 4(-4+3x)=-16 | | 8y-3=5(2y-3)+6 | | -7(7+6x)=245 | | -7(7x+6)=-385 | | 40/8 | | 2w+4=18 | | -n+1=10 |

Equations solver categories